• Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings

Subscribe to Updates

Get the latest creative news from CycleNews about two, three wheelers and Electric vehicles.

What's Hot

The Middle East Has Entered the AI Group Chat

EA Tried to Stop an ‘Anti-DEI Mod’ for ‘The Sims 4’—but More Keep Surfacing

US Tech Visa Applications Are Being Put Through the Wringer

Facebook Twitter Instagram
  • Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings
Facebook Twitter Instagram Pinterest
Cycle News
Submit Your Ad
Cycle News
You are at:Home » The Quest to Give AI Chatbots a Hand—and an Arm
Electric Motorcycles

The Quest to Give AI Chatbots a Hand—and an Arm

cycleBy cycleMarch 11, 202403 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Peter Chen, CEO of the robot software company Covariant, sits in front of a chatbot interface resembling the one used to communicate with ChatGPT. “Show me the tote in front of you,” he types. In reply, a video feed appears, revealing a robot arm over a bin containing various items—a pair of socks, a tube of chips, and an apple among them.

The chatbot can discuss the items it sees—but also manipulate them. When WIRED suggests Chen ask it to grab a piece of fruit, the arm reaches down, gently grasps the apple, and then moves it to another bin nearby.

This hands-on chatbot is a step toward giving robots the kind of general and flexible capabilities exhibited by programs like ChatGPT. There is hope that AI could finally fix the long-standing difficulty of programming robots and having them do more than a narrow set of chores.

“It’s not at all controversial at this point to say that foundation models are the future of robotics,” Chen says, using a term for large-scale, general-purpose machine-learning models developed for a particular domain. The handy chatbot he showed me is powered by a model developed by Covariant called RFM-1, for Robot Foundation Model. Like those behind ChatGPT, Google’s Gemini, and other chatbots it has been trained with large amounts of text, but it has also been fed video and hardware control and motion data from tens of millions of examples of robot movements sourced from the labor in the physical world.

Including that extra data produces a model not only fluent in language but also in action and that is able to connect the two. RFM-1 can not only chat and control a robot arm but also generate videos showing robots doing different chores. When prompted, RFM-1 will show how a robot should grab an object from a cluttered bin. “It can take in all of these different modalities that matter to robotics, and it can also output any of them,” says Chen. “It’s a little bit mind-blowing.”

Video generated by the RFM-1 AI model.Courtesy of Covariant

Video generated by the RFM-1 AI model.Courtesy of Covariant

The model has also shown it can learn to control similar hardware not in its training data. With further training, this might even mean that the same general model could operate a humanoid robot, says Pieter Abbeel, cofounder and chief scientist of Covariant, who has pioneered robot learning. In 2010 he led a project that trained a robot to fold towels—albeit slowly—and he also worked at OpenAI before it stopped doing robot research.

Covariant, founded in 2017, currently sells software that uses machine learning to let robot arms pick items out of bins in warehouses but they are usually limited to the task they’ve been training for. Abeel says that models like RFM-1 could allow robots to turn their grippers to new tasks much more fluently. He compares Covariant’s strategy to how Tesla uses data from cars it has sold to train its self-driving algorithms. “It’s kind of the same thing here that we’re playing out,” he says.

Abeel and his Covariant colleagues are far from the only roboticists hoping that the capabilities of the large language models behind ChatGPT and similar programs might bring about a revolution in robotics. Projects like RFM-1 have shown promising early results. But how much data may be required to train models that make robots that have much more general abilities—and how to gather it—is an open question.



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleYour Next Job: Brain-Computer Interface Surgeon
Next Article Airbnb Bans All Indoor Security Cameras
cycle
  • Website

Related Posts

The Middle East Has Entered the AI Group Chat

May 15, 2025

EA Tried to Stop an ‘Anti-DEI Mod’ for ‘The Sims 4’—but More Keep Surfacing

May 15, 2025

US Tech Visa Applications Are Being Put Through the Wringer

May 15, 2025
Add A Comment

Leave A Reply Cancel Reply

You must be logged in to post a comment.

Demo
Top Posts

The Middle East Has Entered the AI Group Chat

May 15, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from FooBar about tech, design and biz.

Demo
Most Popular

The Middle East Has Entered the AI Group Chat

May 15, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Our Picks

Suzuki Recalls Over 900 Hayabusas for Bad Brake Nut

The Genius Behind @OKWildlifeDept’s Most Viral Tweets Is Signing Off

2025 San Diego Supercross Results, Coverage, Video, Standings

Subscribe to Updates

Get the latest news from CycleNews about two, three wheelers and Electric vehicles.

© 2025 cyclenews.blog
  • Home
  • About us
  • Get In Touch
  • Shop
  • Listings
  • My Account
  • Submit Your Ad
  • Terms & Conditions
  • Stock Ticker

Type above and press Enter to search. Press Esc to cancel.