• Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings

Subscribe to Updates

Get the latest creative news from CycleNews about two, three wheelers and Electric vehicles.

What's Hot

2026 BMW R 1300 R First Look [13 Fast Facts]

The Middle East Has Entered the AI Group Chat

EA Tried to Stop an ‘Anti-DEI Mod’ for ‘The Sims 4’—but More Keep Surfacing

Facebook Twitter Instagram
  • Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings
Facebook Twitter Instagram Pinterest
Cycle News
Submit Your Ad
Cycle News
You are at:Home » Correcting Genetic Spelling Errors With Next-Generation Crispr
Electric Motorcycles

Correcting Genetic Spelling Errors With Next-Generation Crispr

cycleBy cycleJanuary 7, 202504 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Sam Berns was my friend. With the wisdom of a sage, he inspired me and many others about how to make the most of life. Afflicted with the rare disease called progeria, his body aged at a rapid rate, and he died of heart failure at just 17, a brave life cut much too short.

My lab discovered the genetic cause of Sam’s illness two decades ago: Just one DNA letter gone awry, a T that should have been a C in a critical gene called lamin A. The same misspelling is found in almost all of the 200 individuals around the world with progeria.

The opportunity to address this illness by directly fixing the misspelling in the relevant body tissues was just science fiction a few years ago. Then Crispr came along—the elegant enzymatic apparatus that allows delivery of DNA scissors to a specific target in the genome. In December 2023, the FDA approved the first Crispr-based therapy for sickle cell disease. That approach required taking bone marrow cells out of the body, making a disabling cut in a particular gene that regulates fetal hemoglobin, treating the patient with chemotherapy to make room in the marrow, and then reinfusing the edited cells. A relief from lifelong anemia and excruciating attacks of pain is now being delivered to sickle cell patients, albeit at very high cost.

For progeria and thousands of other genetic diseases, there are two reasons why this same approach won’t work. First, the desired edit for most misspellings will not usually be achieved by a disabling cut in the gene. Instead, a correction is needed.  In the case of progeria, the disease-causing T needs to be edited back to a C.  By analogy with a word processor, what’s needed is not “find and delete” (first-generation Crispr), it’s “find and replace” (next-generation Crispr). Second, the misspelling needs to be repaired in the parts of the body that are most harmed by the disease. While bone marrow cells, immune cells, and skin cells can be taken out of the body to administer gene therapy, that won’t work when the main problem is in the cardiovascular system (as in progeria) or the brain (as in many rare genetic diseases). In the lingo of the gene therapist, we need in vivo options.

The exciting news in 2025 is that both of these barriers are starting to come down. The next generation of Crispr-based gene editors, pioneered particularly elegantly by David Liu of the Broad Institute, allows precise corrective editing of virtually any gene misspelling, without inducing a scissors cut. As for delivery systems, the family of adeno-associated virus (AAV) vectors already provides the ability to achieve in vivo editing in eye, liver, and muscle, though there is still much work to be done to optimize delivery to other tissues and ensure safety. Nonviral delivery systems such as lipid nanoparticles are under intense development and may displace viral vectors in a few years.

Working with David Liu, Sam Berns’ mom, and Leslie Gordon of the Progeria Research Foundation, my research group has already shown that a single intravenous infusion of an in vivo gene editor can dramatically extend the life of mice that have been engineered to carry the human progeria mutation. Our team is now working to bring this forward to a human clinical trial. We are truly excited about the potential for kids with progeria, but that excitement could have even greater impact. This strategy, if successful, could be a model for the approximately 7,000 genetic diseases where the specific misspelling that causes the disease is known, but no therapy exists.

There are many hurdles, cost being a major one as private investment is absent for diseases that affect only a few hundred individuals. However, success for a few rare diseases, supported by government and philanthropic funds, will likely lead to efficiencies and economies that will help with other future applications. This is the best hope for the tens of millions of children and adults who are waiting for a cure. The rare-disease community must press on. That’s what Sam Berns would have wanted.



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleSatellites Can Now Identify Methane ‘Super-Emitters’
Next Article THE PACK Magazine #2 is an e-offroad special and now available via print-on-demand | thepack.news | THE PACK
cycle
  • Website

Related Posts

The Middle East Has Entered the AI Group Chat

May 15, 2025

EA Tried to Stop an ‘Anti-DEI Mod’ for ‘The Sims 4’—but More Keep Surfacing

May 15, 2025

US Tech Visa Applications Are Being Put Through the Wringer

May 15, 2025
Add A Comment

Leave A Reply Cancel Reply

You must be logged in to post a comment.

Demo
Top Posts

2026 BMW R 1300 R First Look [13 Fast Facts]

May 15, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from FooBar about tech, design and biz.

Demo
Most Popular

2026 BMW R 1300 R First Look [13 Fast Facts]

May 15, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Our Picks

This Is Why Tesla’s Stainless Steel Cybertrucks May Be Rusting

J.D. Vance Left His Venmo Public. Here’s What It Shows

Super73 showcased the modularity and dynamic design of their C1X at EICMA | thepack.news | THE PACK

Subscribe to Updates

Get the latest news from CycleNews about two, three wheelers and Electric vehicles.

© 2025 cyclenews.blog
  • Home
  • About us
  • Get In Touch
  • Shop
  • Listings
  • My Account
  • Submit Your Ad
  • Terms & Conditions
  • Stock Ticker

Type above and press Enter to search. Press Esc to cancel.