• Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings

Subscribe to Updates

Get the latest creative news from CycleNews about two, three wheelers and Electric vehicles.

What's Hot

2025 BMW R 1300 GS Adventure to Quail MotoFest: A Travel Story

Silicon Valley Is Starting to Pick Sides in Musk and Trump’s Breakup

Royal Enfield BTR Road Racing Road America Results, Coverage

Facebook Twitter Instagram
  • Home
  • Motorcycles
  • Electric Motorcycles
  • 3 wheelers
  • FUV Electric 3 wheeler
  • Shop
  • Listings
Facebook Twitter Instagram Pinterest
Cycle News
Submit Your Ad
Cycle News
You are at:Home » Could Humans Have a Brain Microbiome?
Electric Motorcycles

Could Humans Have a Brain Microbiome?

cycleBy cycleJanuary 5, 202504 Mins Read
Share Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


The human gut microbiome plays a critical role in the body, communicating with the brain and maintaining the immune system through the gut-brain axis. So it isn’t totally far-fetched to suggest that microbes could play an even larger role in our neurobiology.

Fishing for Microbes

For years, Irene Salinas has been fascinated by a simple physiological fact: The distance between the nose and the brain is quite small. The evolutionary immunologist, who works at the University of New Mexico, studies mucosal immune systems in fish to better understand how human versions of these systems, such as our intestinal lining and nasal cavity, work. The nose, she knows, is loaded with bacteria, and they’re “really, really close” to the brain—mere millimeters from the olfactory bulb, which processes smell. Salinas has always had a hunch that bacteria might be leaking from the nose into the olfactory bulb. After years of curiosity, she decided to confront her suspicion in her favorite model organisms: fish.

Salinas and her team started by extracting DNA from the olfactory bulbs of trout and salmon, some caught in the wild and some raised in her lab. (Important contributions to the research were made by Amir Mani, the lead author of the paper.) They planned to look up the DNA sequences in a database to identify any microbial species.

These kinds of samples, however, are easily contaminated—by bacteria in the lab or from other parts of a fish’s body—which is why scientists have struggled to study this subject effectively. If they did find bacterial DNA in the olfactory bulb, they would have to convince themselves and other researchers that it truly originated in the brain.

To cover their bases, Salinas’ team studied the fishes’ whole-body microbiomes, too. They sampled the rest of the fishes’ brains, guts, and blood; they even drained blood from the many capillaries of the brain to make sure that any bacteria they discovered resided in the brain tissue itself.

“We had to go back and redo [the experiments] many, many times just to be sure,” Salinas said. The project took five years—but even in the early days it was clear that the fish brains weren’t barren.

As Salinas expected, the olfactory bulb hosted some bacteria. But she was shocked to see that the rest of the brain had even more. “I thought the other parts of the brain wouldn’t have bacteria,” she said. “But it turned out that my hypothesis was wrong.” The fish brains hosted so much that it took only a few minutes to locate bacterial cells under a microscope. As an additional step, her team confirmed that the microbes were actively living in the brain; they weren’t dormant or dead.

Olm was impressed by their thorough approach. Salinas and her team circled “the same question, from all these different ways, using all these different methods—all of which produced convincing data that there actually are living microbes in the salmon brain,” he said.

But if there are, how did they get there?

Invading the Fortress

Researchers have long been skeptical that the brain could have a microbiome because all vertebrates, including fish, have a blood-brain barrier. These blood vessels and surrounding brain cells are fortified to serve as gatekeepers that allow only some molecules in and out of the brain and keep invaders, especially larger ones like bacteria, out. So Salinas naturally wondered how the brains in her study had been colonized.

By comparing microbial DNA from the brain to that collected from other organs, her lab found a subset of species that didn’t appear elsewhere in the body. Salinas hypothesized that these species may have colonized the fish brains early in their development, before their blood-brain barriers had fully formed. “Early on, anything can go in; it’s a free-for-all,” she said.



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
Previous ArticleFamel launches Advanced Development and Prototyping Center in Guimarães, Portugal | thepack.news | THE PACK
Next Article AlphaTheta DDJ-FLX2 Review: A Great Entry-Level DJ Controller
cycle
  • Website

Related Posts

Silicon Valley Is Starting to Pick Sides in Musk and Trump’s Breakup

June 5, 2025

Elon Musk’s Feud With President Trump Wipes $152 Billion Off Tesla’s Market Cap

June 5, 2025

Elon Musk Is Posting Through It

June 5, 2025
Add A Comment

Leave A Reply Cancel Reply

You must be logged in to post a comment.

Demo
Top Posts

2025 BMW R 1300 GS Adventure to Quail MotoFest: A Travel Story

June 5, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Stay In Touch
  • Facebook
  • YouTube
  • TikTok
  • WhatsApp
  • Twitter
  • Instagram
Latest Reviews

Subscribe to Updates

Get the latest tech news from FooBar about tech, design and biz.

Demo
Most Popular

2025 BMW R 1300 GS Adventure to Quail MotoFest: A Travel Story

June 5, 2025

The urban electric commuter FUELL Fllow designed by Erik Buell is now opening orders | thepack.news | THE PACK

July 29, 2023

2024 Yamaha Ténéré 700 First Look [6 Fast Facts For ADV Riding]

July 29, 2023
Our Picks

2025 EM Epure Factor-e First Look [9 Fast Facts, 2 Models]

How to Buy Ethical and Eco-Friendly Electronics (2025)

Garmin Zūmo XT2 Review [Motorcycle GPS Navigator]

Subscribe to Updates

Get the latest news from CycleNews about two, three wheelers and Electric vehicles.

© 2025 cyclenews.blog
  • Home
  • About us
  • Get In Touch
  • Shop
  • Listings
  • My Account
  • Submit Your Ad
  • Terms & Conditions
  • Stock Ticker

Type above and press Enter to search. Press Esc to cancel.